Закрыть рекламу ^

Самые последние достижения медицины

Самые последние достижения медициныНевероятные факты

Человеческое здоровье напрямую касается каждого из нас.

Средства массовой информации изобилуют рассказами о нашем здоровье и теле, начиная созданием новых лекарственных препаратов и заканчивая открытиями уникальных методов хирургии, которые дают надежду инвалидам.

Ниже мы расскажем о самых свежих достижениях современной медицины.

Последние достижения медицины

10. Учёные идентифицировали новую часть тела

Ещё в 1879 году французский хирург по имени Пол Сегон (Paul Segond) описал в одном из своих исследований "жемчужную, устойчивую волокнистую ткань", проходящую вдоль связок в колене человека.

10.jpg

Об этом исследовании благополучно забыли до 2013 года, когда учёные обнаружили переднебоковую связку, коленную связку, которая часто повреждается при возникновении травм и других проблем.

Учитывая, как часто сканируется колено человека, открытие было сделано очень поздно. Оно описано в журнале "Анатомия" и опубликовано он-лайн в августе 2013 года.

10-1.jpg

Авторы исследования изучили 41 пару коленей и нашли новую связку во всех, кроме одной пары, придя к выводу, что новая часть тела – это чётко различимая ткань со своей выверенной структурой.

Ранее в текущем году учёные опубликовали в журнале "Офтальмология" открытие ещё одной новой части тела, обнаруженной в глазу. Речь идёт о микроскопическом слое роговицы, который назвали "слой Дуа".

9. Интерфейс мозг-компьютер

9.jpg

Учёные, работающие в Корейском университете и Технологическом университете Германии, разработали новый интерфейс, который даёт возможность пользователю управлять экзоскелетом нижних конечностей.

Он работает с помощью декодирования конкретных мозговых сигналов. Результаты исследования были опубликованы в августе 2015 года в журнале "Нейронная инженерия".

Читайте также: Самые странные методы лечения в истории медицины

Участники эксперимента носили электроэнцефалограммовый головной убор и управляли экзоскелетом, просто смотря на один из пяти светодиодов, установленных на интерфейсе. Это заставляло экзоскелет двигаться вперёд, поворачивать направо или налево, а также сидеть или стоять.

9-1.jpg

Пока система была протестирована лишь на здоровых добровольцах, но есть надежда, что в конечном итоге её можно будет использовать, чтобы помочь инвалидам.

Соавтор исследования Клаус Мюллер (Klaus Muller) объяснил, что "люди с боковым амиотрофическим склерозом или с травмами спинного мозга часто сталкиваются с трудностями в общении и в контролировании своих конечностей; расшифровка их мозговых сигналов такой системой предлагает решение обеих проблем".

Достижения науки в медицине

8. Устройство, которое может двигать парализованную конечность силой мысли

8.jpg

В 2010 году Яна Беркхарта (Ian Burkhart) парализовало, когда во время несчастного случая в бассейне он сломал себе шею. В 2013 году благодаря совместным усилиям специалистов университета штата Огайо и Баттелль, мужчина стал первым в мире человеком, который теперь может обойти свой спинной мозг и двигать конечностью, используя только силу мысли.

Прорыв случился благодаря использованию нового вида электронного нервного байпаса, устройства размером с горошину, которое имплантируется в моторную кору головного мозга человека.

Чип интерпретирует сигналы мозга и передаёт их на компьютер. Компьютер считывает сигналы и посылает их на специальный рукав, который носит пациент. Таким образом, нужные мышцы приводятся в действие.

Весь процесс занимает доли секунды. Однако, чтобы добиться такого результата, команде пришлось изрядно потрудиться. Команда технологов сначала выяснила точную последовательность электродов, которая позволяла Беркхарту двигать рукой.

Затем мужчине пришлось проходить несколько месяцев терапию для восстановления атрофированных мышц. Конечным результатом является то, что теперь он может вращать рукой, сжимать её в кулак, а также на ощупь определять, что перед ним находится.

7. Бактерия, которая питается никотином и помогает курильщикам завязать с пагубной привычкой

7.jpg

Бросить курить – это чрезвычайно трудная задача. Любой, кто пытался это сделать, подтвердит сказанное. Почти 80 процентов тех, кто пробовал это совершить с помощью аптечных препаратов, претерпел неудачу.

В 2015 году учёные из научно-исследовательского института Скриппса дают новую надежду желающим бросить. Им удалось выявить бактериальный фермент, который поедает никотин ещё до того, как он успевает добраться до мозга.

Фермент принадлежит бактерии Pseudomonas putida. Данный фермент не является новейшим открытием, однако, его только недавно удалось вывести в лабораторных условиях.

Исследователи планируют использовать этот фермент для создания новых методов отказа от курения. Блокируя никотин прежде, чем он достигнет мозга и вызовет производство допамина, они надеются, что они смогут отбить у курильщика желание взять в рот сигарету.

7-1.jpg

Чтобы стать работоспособной, любая терапия должна быть достаточно стабильной, не вызывая во время активности дополнительных проблем. В настоящее время произведенный в лабораторных условиях фермент ведёт себя стабильно в течение более трёх недель, находясь в буферном растворе.

Тесты с участием лабораторных мышей не показали никаких побочных эффектов. Учёные опубликовали результаты своего исследования в он-лайн версии августовского номера журнала "Американское химическое сообщество".

6. Универсальная вакцина против гриппа

6.jpg

Пептиды – это короткие цепочки аминокислот, которые существует в клеточной структуре. Они выступают в качестве основного строительного блока для белков. В 2012 году учёным, работавшим в университете Саутгемптона, Оксфордском университете и лаборатории вирусологии Ретроскин, удалось выявить новый набор пептидов, найденных у вируса гриппа.

Это может привести к созданию универсальной вакцины против всех штаммов вируса. Результаты были опубликованы в журнале Nature Medicine.

В случае гриппа пептиды на внешней поверхности вируса очень быстро мутируют, что делает их почти недосягаемыми для вакцин и лекарств. Недавно обнаруженные пептиды живут во внутренней структуре клетки и мутируют довольно медленно.

6-1.jpg

Более того, эти внутренние структуры можно обнаружить в каждом штамме гриппа, начиная от классического и заканчивая птичьим. Для разработки современной вакцины от гриппа требуется около шести месяцев, однако, она не обеспечивает иммунитетом на долгое время.

Тем не менее, возможно, сориентировав усилия на работе внутренних пептидов, создать универсальную вакцину, которая даст долговременную защиту.

Грипп – это вирусное заболевание верхних дыхательных путей, которое поражает нос, горло и лёгкие. Оно может быть смертельно опасным, особенно если заразился ребёнок или пожилой человек.

6-2.jpg

Штаммы гриппа ответственны за несколько пандемий на протяжении всей истории, самая страшная из которых, - пандемия 1918 года. Никто не знает наверняка, сколько людей погибло от этой болезни, но по некоторым оценкам, 30-50 миллионов человек во всем мире.

Новейшие медицинские достижения

5. Возможное лечение болезни Паркинсона

5.jpg

В 2014 году учёные взяли искусственные, но полностью функционирующие человеческие нейроны и успешно привили их в мозг мышам. У нейронов есть потенциал для лечения и даже вылечивания таких заболеваний, как болезнь Паркинсона.

Нейроны были созданы группой специалистов из института Макса Планка, университетской клиники Мюнстера и университета Билефельда. Учёным удалось создать стабильную нервную ткань из нейронов, перепрограммированных из клеток кожи.

5-1.jpg

Другими словами, они индуцировали нейронные стволовые клетки. Это метод, который увеличивает совместимость новых нейронов. Спустя шесть месяцев у мышей не развилось никаких побочных эффектов, а имплантированные нейроны отлично интегрировались с их мозгом.

Грызуны продемонстрировали нормальную мозговую деятельность, в результате которой сформировались новые синапсы.

5-2.jpg

У новой методики есть потенциал, который может дать нейрологам возможность заменить больные, поврежденные нейроны здоровыми клетками, которые в один прекрасный день смогут справиться с болезнью Паркинсона. Из-за неё нейроны, поставляющие допамин, умирают.

Читайте также: 10 невероятных историй чудес в медицине

На сегодняшний день никакого лечения от этого заболевания нет, но симптомы поддаются лечению. Болезнь, как правило, развивается у людей в возрасте 50-60 лет. При этом мышцы становятся жёсткими, происходят изменения в речи, меняется походка и появляется тремор.

4. Первый в мире бионический глаз

4.jpg

Пигментный ретинит является наиболее распространённым среди наследственных заболеваний глаз. Он приводит к частичной потере зрения, а зачастую и к полной слепоте. К ранним симптомам относится потеря ночного видения и трудности с периферийным зрением.

В 2013 году была создана система протезирования сетчатки Argus II, первый в мире бионический глаз, предназначенный для лечения запущенной стадии пигментного ретинита.

Система Argus II – это пара наружных стёкол, оснащённых камерой. Изображения преобразуются в электрические импульсы, которые передаются электродам, имплантированным в сетчатку глаза пациента.

Эти изображения головным мозгом воспринимаются как световые шаблоны. Человек учится интерпретировать эти паттерны, постепенно восстанавливая зрительное восприятие.

В настоящее время система Argus II пока доступна только на территории США и Канады, но есть планы по её внедрению во всём мире.

Новые достижения в области медицины

3. Обезболивающее, которое работает только за счёт света

3.jpg

Сильную боль традиционно лечат опиоидными препаратами. Основной недостаток в том, что многие такие препараты могут вызывать привыкание, поэтому потенциал для злоупотреблений у них огромен.

А что если учёные смогли бы останавливать боль не используя ничего, кроме света?

В апреле 2015 года неврологи Вашингтонской медицинской школы при университете в Сент-Луисе объявили, что им удалось это сделать.

3-1.jpg

Путём соединения свето-чувствительного белка с опиоидными рецепторами в пробирке, они смогли активировать опиоидные рецепторы также, как это делают опиаты, но только с помощью света.

Результаты своих опытов они опубликовали он-лайн в журнале Neuron.

Есть надежда, что эксперты смогут разработать способы использования света для облегчения боли при применении лекарств с меньшими побочными эффектами. Согласно исследованиям Эдварда Сиуда (Edward R. Siuda), вполне вероятно, что после дополнительных экспериментов, свет сможет полностью заменить лекарства.

3-2.jpg

Для тестирования нового рецептора светодиодный чип размером примерно с человеческий волос был имплантирован в мозг мыши, который после этого связали с рецептором. Мышей помещали в камеру, где их рецепторы стимулировали на выработку допамина.

Если мыши уходили из специальной отведённой зоны, то свет выключали и стимулирование останавливалось. Грызуны быстро возвращались на место.

2. Искусственные рибосомы

2.jpg

Рибосома – это молекулярная машина, состоящая из двух субъединиц, которые используют аминокислоты из клеток, чтобы создавать белки.

Каждая из субъединиц рибосом синтезируется в ядре ячейки, а затем экспортируется в цитоплазму.

В 2015 году исследователи Александр Мэнкин (Alexander Mankin) и Майкл Джеветт (Michael Jewett) смогли создать первую в мире искусственную рибосому. Благодаря этому у человечества появился шанс узнать новые подробности о работе этой молекулярной машины.

Читайте также: Какой будет медицина в 2020 году?

Она также сможет послужить основой для создания лекарственных препаратов и биологических материалов будущего.

Результаты исследования они опубликовали в электронной версии журнала Science.

Согласно этому документу, искусственная рибосома, называемая "рибо-Т", продолжает функционировать после введении клетки E.coli, даже при отсутствии "диких" рибосом, сохраняя бактерии живыми и демонстрируя их способность к размножению.

2-1.jpg

В отличие от обычных рибосом рибо-Т не разделяются, что до сих пор считалось неотъемлемой частью белкового синтеза. Рибо-Т учит нас новым аспектам работы рибосомы.

"Наша новая, создающая белок система, обещает расширить генетический код уникальным, преобразующим образом, предоставляя тем самым захватывающие возможности для синтетической биологии и биомолекулярной инженерии", - делится Майкл Джеветт.

1. Двусторонний трансплантат рук

1.jpg

Врачи детской больницы в Филадельфии вошли в историю, когда ранее в текущем году успешно пересадили две донорские кисти рук и предплечья 8-летнему Циону Харви (Zion Harvey). Харви пережил пересадку почки и двойную ампутацию после перенесения в 2-летнем возрасте серьёзной инфекции.

Донорские конечности были куплены в рамках программы некоммерческой организации Gift of Life Donor Program. Хирургическая бригада собрала воедино кости, кровеносные сосуды, нервы, сухожилия и кисти рук во время сложнейшей 10-часовой операции, которая была проведена в июле текущего года.

Таким образом, Харви стал первым ребёнком в мире, прошедшим процедуру по двухсторонней трансплантации рук. В настоящее время мальчик нуждается в ежедневных иммунодепрессантах, а также он проходит физиотерапию, чтобы максимально восстановить функциональность кистей.

Как и в случае с другими рецепиентами донорских органов, Харви будет вынужден до конца жизни принимать лекарственные препараты и проходить терапию, чтобы минимизировать риск отторжения донорской ткани. 

Источник: ListVerse.com

Мы в соцсетях

Канал в Яндекс.Дзен Канал в Телеграмм Вконтакте Tik-Tok Одноклассники
Оставить комментарий
Оставить комментарий
 
Текст сообщения*
Защита от автоматических сообщений
 
Популярные темы: